Disease modeling using induced pluripotent stem cells (iPSC)

Neurodevelopmental and neurodegenerative disorders have an incidence of at least 10% in Western populations. Little is known about the mechanisms and pathophysiology leading to the majority of these central nervous system disorders. To this end, we use induced pluripotent stem cell (iPSC) and CRISPR/Cas9 technologies to model neurogenesis and neuronal function. The objective is to understand disease mechanisms of the central nervous system associated with specific gene variants and, in the long-term, to interfere with these mechanisms in search for novel therapeutic strategies.

Production of iPSC

Microscope image of skeletal muscle fibers
Brain organoid derived from iPSCs after
3 months. The organoids recapitulate formation
of brain structures in 3D. Cortical structures (blue)
are surrounded by meningeal cells (red).
Ventricular zone structures are indicated with arrows.

Fibroblasts are reprogrammed into iPSC using non-integrating vectors expressing the four Yamanaka factors. Reprogramming is followed by differentiation into neuronal progenitor cells and different mature neuronal subpopulations in 2D as well as in 3D (brain organoids). Some fibroblasts are obtained from patients with well-defined neurodevelopmental or neurodegenerative disorders and known causative gene mutations, whereas some cells are obtained from healthy controls for gene-editing by CRISPR/Cas9 to obtain specific mutations and isogenic WT lines.

Functional analyses of neuronal cells comprise e.g. proliferation, apoptosis, migration, dendrite formation, electrophysiological properties, imaging techniques and high through-put biomarker analysis (transcriptome, proteome and methylome analysis) on bulk as well as single cells. Disorders that are currently modelled and under investigation, e.g. Down syndrome, Alzheimer’s disease, Dravet disease, Mowat-Wilson disease, Von Hippel-Lindau disease and Incontinentia Pigmenti. Disease-associated pathways/factors/biomarkers are validated for read-out assays and for future screening of small compound libraries.

Last modified: 2021-03-22